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Aliphatic terminal alkenes (alpha olefins) are produced in metric Table 1. Nickel-Catalyzed, Three-Component Coupling of

megaton amounts each year, and these chemical feedstocks ar'kenes, Aldehydes, and Silyl Triflates

starting materials for the preparation of many classes of organic enty R’ (alkene) R?(aldehyde)  R,SIOT product ;f;’,hatﬁf)
compound<.The value-added component of catalytic intermolecular OSiEty

reactions of these alkenes, such as Ziegiatta oligomerization, 1 (eth;'ene Ph EtsSiOTf \)\© 1a 82
the Heck reactiof and cross-metathesiss especially high because 1am) OsiEty

they convert an inexpensive raw material into a more highly 2 " p-tolyl Et;SiOT 88

C;
S

functionalized compound or polymer with concomitant formation Me

of one or more carboncarbon bonds. Whereas catalytic carbenyl , g e

. . . o-tolyl Et;SIiOTf 1c 93
ene reactions between alpha olefins and aldehydes provide ho- V\fj
moallylic alcohols} there is no method for joining these two OsiEt
building blocks to provideillylic alcohols® Herein we report that, 4 " p-anisyl EtsSiOTf \)\@L 1d 95
in the presence of a nickel catalyst and a silyl triflate, ethylene and osien OMe
alpha olefins can be coupled with aldehydes to form allylic alcohol " pnaphthyl  E4SIOT! : %5

/
?
W

0

derivatives (eq 1).

OSiMeg
C*g;“;(;:‘grz' - 6 " 2-naphthyl  MegSIOTE 1t 60
(0} 2
¢ : 1
RN+ RZJ\H + RgSIOTf  (c-anisyl)P R g M OSiMe,Bu
EtgN, Toluene 1a-l 7 " 2-naphthyl  tBuMe,SiOTf 19 67
23°C
s o R3Si = TMS, )
R'=H, alkyl R®=aryl, +-Bu TES, TBS 44-95% vyield OSiEt
8 " piv Et3SiOTf \/KfMMZ 1h 70
Several research groups, including our own, have developed fsio “ge
. . . . 3!
metal-catalyzed, intermolecular reductive coupling reactions of ¢ " £ _CoMe  Et,SOT! \)Ykom 1i 81
aldehydes with alkynes,1,3-diene$, allenes’) enoate esters, Ve Me Me Me
enoned! and enald? In all of these, an electron-deficientbond, St
. K X X . . . 10 n-hexyl Ph Et;SiOTf  me 1j  48°
in conjunction with a reducing agent, functions as an anion
equivalent. On the other hand, catalytic intermolecular coupling OsiEty
(reductive or otherwise) of alpha olefins and aldehydes has not been 11 isobutyl Ph Et;SiOTt Meﬁ‘)\© T a4t
reportedt3*4 Nickel-promoted, intramolecular alkenaldehyde o e oot
. . . . . 3
reductive coupling was recently described, but this process required ,, e 1 s0b

X . . . . . o Ph Et;SiOTf
a stoichiometric amount of nickel and was not effective in M S

i 16
mt\?\;m?]lecmfr Czsié' ickalatalvsisof i | laralk aSee eq 1. Standard conditions (entrie®): To a solution of Ni(cod)
e have found that nicka@atalysisof intermolecularalkene- (20 mol %) and trigrtho-methoxyphenyl)phosphine (40 mol %) in toluene

aldehyde coupling is possible when certain phosphine ligands, aat 23°C under ethylene (balloon, 1 atm) were added triethylamine (600

i i i i mol %), the silyl triflate (175 mol %), and the aldehyde (100 mol %). The
silyl triflate, and an amine base are employed. As shown in eq 1 M« rreq 28 4 purification b
and Table 1, ethylene, aromatic aldehydes, and silyl triflates undergoﬂl?é%itc‘;éfgpﬁgr@ig affordgfi [)?g?ucttei”;‘f"’gg;eéni?es ggr'l'zca(tj'icc’g_ y
nickel-catalyzed coupling under very mild conditions (1 atm clohexylphenylphosphine and the alkene shown were used in place of
H,C=CHj,, room temperature), yielding a three-component cou- tris(ortho-methoxyphenyl)phosphine and ethylene, respectively (reaction
pling!” product, a silyl ether of an allylic alcohol (entries-Z). In under Ar). See Supporting '“fO’Tat'QhA silyl ether of a homoallylic
some cases, the isolated yield of the product is greater than 90%alcohol was also isolated in £#20% yield. See Supporting Information.

(entries 3-5), highlighting the efficiency and ease of this method ) . )
of assembling protected allylic alcohols in a single operation. In 8). Entry 9 demonstrates another feature of this reaction, functional

general, triethylsilyl triflate is the superior silyl triflate under these 9"OUP compatibility with esters. A competing (yet unsurprising)
conditions, but trimethylsilyl antert-butyldimethylsilyl triflate also side reaction occurs in coupling reactions with aliphatic aldehydes
provide some flexibility in which protective group appears in the Dearing at least one hydrogen adjacent to the carbonyl, enol silane
product (entries 6 and 7). formation?®

Notably, this transformation is very tolerant of sterically demand- ~ Monosubstituted olefins also undergo coupling with aldehydes
ing aliphatic aldehydes (entries 8 and 9). Pivaldehyde, ethylene, in the presence of a similar reagent/catalyst combination (entries
and EtSiOTf undergo smooth coupling to provide the triethylsilyl 10—12). An alpha olefin is thus a functional equivalent of a
ether oftert-butyl vinyl carbinol in one step and in good yield (entry  2-alkenylmetal reagent, complementary to a 1-alkenylmetal reagent

=
o,
é

14194 = J. AM. CHEM. SOC. 2005, 127, 14194—14195 10.1021/ja055363j CCC: $30.25 © 2005 American Chemical Society



COMMUNICATIONS
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major product minor product formed in trace amounts (s1%) or not observed
OSiEtg OSiEtg OSiEt  nhexyl  OSiEty

n-hexyl n-pentyl = hexyl /V\@ %
1j 2j 3 4
Figure 1. Major and minor products.

Our explanation for this product distribution and the other
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observations noted above is summarized in Scheme 1. One of thecharge via the Internet at http:/pubs.acs.org.

key intermediates might be oxametallacyglg>-16 which would
lead to the observed allylic produdjf by reaction with the silyl
triflate, cleavage of the NiO bond, and thefi-H elimination. Even
though it would represent an alternative means by whjctould

be formed,3-H elimination directly fromA is unlikely since the
transition state required would be highly strained. This notion is
supported by the fact that allylic alcohol produ&sand 4 are
generally not formed in the reaction; they would result from the
corresponding-H elimination from regioisomeB.

Scheme 1. Mechanistic Hypothesis for Product Distribution
L L
S [ 1
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The homoallylic alcohol byproduct is most easily explained by
oxametallacycle regioisom@&. With the alkyl chain of the olefin
adjacent to the Ni center, the transition statefdd elimination
directly fromB may be less strained than those frénmandB that
would lead to allylic alcohol products (see above). Another
possibility is that, as in the case &f B first reacts with the silyl
triflate. Subsequeng-H elimination toward the newly installed
carbinol center, which would lead to the generally unobserved allylic
alcohol derivatives3 and 4, might thus be disfavored for steric
and/or electronic reasons.

Scheme 2. Alkenes as Substitutes for Organometallic Reagents

OR R1/\/ cat. Ni(cod)s, OSiR3
' Lewis acid Cy,PPh
R\/\)\Rz -~ 0 — R R2
L EtN, RgsiOT!
alkene is R® "H alkene is
allylmetal carbonyl-ene this work alkenylmetal
equivalent equivalent

Conceptually, as depicted in Scheme 2, the alkene in a carbonyl

ene reaction serves as a replacement for an allylmetal reagent, and
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